Measurement of the Speed of Light by Using the Interference of Microwaves

1．Introduction

The speed of microwaves is the same as that of light．So I thought we can measure the speed of light by using microwaves．
I measured the speed of light by using the interference of microwaves．
What is Interference？
Interference is a phenomenon in which two waves superimpose to form a resultant wave of greater or lower amplitude．

2．Purpose

－To prove that we can measure the speed of light by using the interference of microwaves．
－To show that we can measure the speed of light with the apparatus that we made．

3．Theory

The formula of the speed of waves：

$$
\begin{aligned}
& v=f \lambda \ldots(1) \\
& \mathrm{f}[\mathrm{~Hz}]: \text { frequency }
\end{aligned}
$$

$\mathrm{v}[\mathrm{m} / \mathrm{s}]$ ：speed of wave
$\lambda[\mathrm{m}]$ ：wavelength
In figure 1
OEquation for solid lines

$$
\begin{equation*}
\left|l_{1}-l_{2}\right|=m \lambda \tag{2}
\end{equation*}
$$

OEquation for broken lines

$$
\begin{equation*}
\left|l_{1}-l_{2}\right|=\left(m+\frac{1}{2}\right) \lambda \tag{3}
\end{equation*}
$$

（ $m=0,1,2 \ldots$ ．．．）
$l_{1}, l_{2}[\mathrm{~m}]$ ：the distance of the microwaves from each slit and the amplitude maximum or minimum points

4．Equipment

microwave demonstrator $(10 \mathrm{GHz})$

double－slit＊

microwave
detector

detector moving device
＊aluminum－foil－covered board with two $15 \mathrm{~cm} \times 2 \mathrm{~cm}$ slits next to each other；distance between the slits： 3 cm

6．Results

Table 1	The number of points	The average of the wavelength $[\mathrm{m}]$	The average of the speed of light $[\mathrm{m} / \mathrm{s}]$	Standard error of the speed of light $[\mathrm{m} / \mathrm{s}]$
All data	105	2.87×10^{-2}	2.87×10^{8}	0.06×10^{8}
maximum	40	2.26×10^{-2}	2.26×10^{8}	0.03×10^{8}
minimum	65	3.25×10^{-2}	3.25×10^{8}	0.06×10^{8}
＂good data	$\mathbf{4 9}$	$\mathbf{3 . 0 5} \times 10^{-2}$	$\mathbf{3 . 0 5} \times 10^{8}$	$\mathbf{0 . 0 4} \times 10^{8}$

＊good data（with the range of $\pm 0.5[\mathrm{~cm}]$ from the expected wavelength）
Standard error is the standard deviation of the sampling distribution of a statistic．
－According to the reference book，the speed of light is $3.00 \times 10^{8}[\mathrm{~m} / \mathrm{s}]$ ．

5．Experiment

1．Set－up of experiment apparatus（see Figure 8）．
2．The detector was placed parallel to the two slits to search for the amplitude maximum and minimum points by looking at the voltmeter．

3．When we found the maximum and minimum points，we recorded them on the paper placed just under the detector．

8．Conclusion

－The speed of light can be measured by using the interference of microwaves．
－We can measure the speed of light with the apparatus that we made．

7．Discussion

According to table 1 ，the speed of light for all data is $(2.87 \pm 0.06) \times 10^{\wedge} 8[\mathrm{~m} / \mathrm{s}]$ ． This is near to $3.00 \times 10^{8}[\mathrm{~m} / \mathrm{s}]$ so we can measure the speed of light in this way，but we thought we can measure the speed more accurately，so we calculated the speed of light by using only the minimum points and by using only maximum points in order to know what we should do to get more correct value．
The value for minimum points is better than that of maximum points．
I thought the reason is that the needle of the voltmeter moves too small to read correctly．
These 65 minimum points include some failed data so we took them away and calculated the speed of light again．$(3.05 \pm 0.04) \times 10^{\wedge} 8[\mathrm{~m} / \mathrm{s}]$ is the data．
This is much nearer to $3.00 \times 10^{\wedge} 8[\mathrm{~m} / \mathrm{s}]$ than that for all minimum points．
\qquad

9．Future Research

－To collect more minimum points＇data in order to know more accurately the value of the speed of light．
－To measure the speed of light in another way．

