

【Experiment】 Measurement of Specific Heat

【Objective】 To determine the specific heat capacity of a metal by applying the principle of conservation of thermal energy.

Experimental Procedure

- Member C (Materials Handler)** places the empty cup on the balance and presses the **TARE** button to set the display to zero. Fill the cup about halfway with water and measure the mass of the water, m_2 , using the balance
- Member D (Temperature Monitor)** measures the initial temperature of the water, t_2 . Make sure that the thermometer probe does not have a protective cap attached.
- Member C** carries the cup containing the water to retrieve the metal sample. Report the initial temperature of the metal, t_1 , to **Member B (Recorder)**. The mass of the metal sample used in this experiment is **100 g**, regardless of the type of metal.
- Member D** uses a spoon to gently stir the water for about 30 seconds to ensure that the temperature is uniform throughout the water.
- Member D** measures the maximum temperature of the water, t_3 , using the thermometer. Be careful not to allow the thermometer probe to touch the metal sample.
- fgg

Result A

	Mass of the water m_2 [g]	Specific heat capacity of water c 4.2 [J/(g·K)]	Initial temperature of the water t_2 [°C]
Cup A			

Color of Metal A	Mass of Metal A, m_1 [g]	Specific heat capacity of Metal A, c c_A [J/(g·K)]	Initial temperature of Metal A, t_1 [°C]

Maximum temperature of the water [°C]	
---------------------------------------	--

Analysis A

【Question 1】 Determine the temperature change of Metal A and the temperature change of the water.

Temperature change of Metal A [°C]	Temperature change of the water [°C]

【Question 2】 Express, using equations, the amount of heat Q_1 lost by Metal A and the amount of heat Q_2 gained by the water. ($Q=m \times c \times \Delta t$)

$Q_1 =$

$Q_2 =$

【Question 3】 Assuming that heat is transferred only between Metal A and the water, determine the specific heat capacity c_A of the metal. Based on the calculated value of c_A , identify the type of Metal A.

$c_A =$	[J/(g·K)]	Type of the metal
---------	-----------	-------------------

Result B

	Mass of the water m_2 [g]	Specific heat capacity of water c 4.2 [J/(g·K)]	Initial temperature of the water t_2 [°C]
Cup B			

Color of Metal B	Mass of Metal B, m_1 [g]	Specific heat capacity of Metal B, c c_A [J/(g·K)]	Initial temperature of Metal B, t_1 [°C]

Maximum temperature of the water [°C]	
---------------------------------------	--

Analysis B

【Question 1】 Determine the temperature change of Metal A and the temperature change of the water.

Temperature change of Metal B [°C]	Temperature change of the water [°C]

【Question 2】 Express, using equations, the amount of heat Q_1 lost by Metal A and the amount of heat Q_2 gained by the water. ($Q=m \times c \times \Delta t$)

$Q_1 =$

$Q_2 =$

【Question 3】 Assuming that heat is transferred only between Metal B and the water, determine the specific heat capacity c_B of the metal. Based on the calculated value of c_A , identify the type of Metal B.

$c_B =$	[J/(g·K)]	Type of the metal
---------	-----------	-------------------

Discussion

【Question 1】 Compare the calculated value of the specific heat capacity with the accepted (theoretical) value, and determine the relative error.

Metal A	Relative error %	Metal B	Relative error %

【Question 2】 Based on this experiment, what improvements could be made to measure the specific heat capacity of a metal more accurately?

【実験】比熱の測定 【目標】熱量保存の関係を利用して、金属の比熱を測定する。

実験手順 各自の役割:A:リーダー B:記録

係 C:運搬係 D:温度管理係

- メンバーC(運搬係)がはかりに空のコップを載せ、TARE ボタンを押して重さ表示を 0 にする。コップに水を半分程度入れ、はかりで水の質量 m_2 を測定する。
- メンバーD(温度管理係)が水のはじめの温度 t_2 を測る。温度計のプローブにキャップが着いていないか確認すること。
- メンバーC が水入りコップを持って、金属サンプルを取りに行く。金属のはじめの温度 t_1 をメンバーB(記録係)に伝える。今回使用する金属サンプルの質量 m_1 は、種類に依らず 100g である。
- メンバーD(温度管理係)がスプーンを使って、水の温度が均一になるように 30 秒ほど優しくかきまぜる。
- メンバーD(温度管理係)が温度計で水の最高温度 t_3 を測る。温度計のプローブを金属に当てないようにすること。
- 実験結果 A が埋まったらもう一つのコップを使って実験 B (2回目) を行う。

実験結果 A

	水の質量 m_2 [g]	水の比熱 c [J/(g · K)]	水のはじめの温度 t_2 [°C]
コップ A		4.2	

金属 A の種類(色)	金属 A の質量 m_1 [g]	金属 A の比熱 $[J/(g · K)]$	金属 A のはじめの温度 t_1 [°C]
		c_A	

水の最高温度 t_3 [°C]	
-------------------	--

分析 A

【Q 1】金属 A の温度変化と水の温度変化を求めよ。

金属 A の温度変化 [°C]	水の温度変化 [°C]

【Q 2】金属 A が失った熱量 Q_1 と水が得た熱量 Q_2 を数式で表してみよう。 $(Q=m \times c \times \Delta t)$

$Q_1 =$	$Q_2 =$
---------	---------

【Q 3】熱が金属 A と水の間だけで移動すると仮定し、金属の比熱 c_A を求めよ。また、比熱の値から金属 A の種類は何だと考えられるか？

実験結果 B

月 日 班 年 組 番 名前

	水の質量 m_2 [g]	水の比熱 c [J/(g · K)]	水のはじめの温度 t_2 [°C]
コップ B		4.2	

金属 B の種類(色)	金属 B の質量 m_1 [g]	金属 B の比熱 [J/(g · K)]	金属 B のはじめの温度 t_1 [°C]
		c_B	

水の最高温度 t_3 [°C]

分析 B

【Q 1】金属 B の温度変化と水の温度変化を求めよ。

金属 B の温度変化 [°C]	水の温度変化 [°C]

【Q 2】金属 B が失った熱量 Q_1 と水が得た熱量 Q_2 を数式で表してみよう。 $(Q=m \times c \times \Delta t)$

$Q_1 =$

$Q_2 =$

【Q 3】熱が金属 B と水の間だけで移動すると仮定し、金属 B の比熱 c_B を求めよ。また、比熱の値から金属 B の種類は何だと考えられるか？

$c_B =$	金属の種類
---------	-------

考察

【Q 1】求めた比熱の値を理論値と比較し、相対誤差を求めよう。

金属 A	相対誤差 %	金属 B	相対誤差 %
------	--------	------	--------

【Q 2】この実験によって、金属の比熱を正確に測定するためには、どのような工夫をすればよいだろうか。

